帮助中心 广告联系

潜江资讯网 - 潜江在线,潜江教育、信息、新闻、租房、人才、二手房、咨询网

热门关键词:

关于阿(ā)谀(yú)逢(féng)迎(yíng)具体情况是什么?

来源:原创/投稿/转载 发布时间:2023-07-09

  当前,大型语言模型(LLM)已经掀起自然语言处理(NLP)领域的变革浪潮。我们看到 LLM 具备强大的涌现能力,在复杂的语言理解任务、生成任务乃至推理任务上都表现优异。这启发人们进一步探索 LLM 在机器学习另一子领域 —— 计算机视觉(CV)方面的潜力。

  LLM 的一项卓越才能是它们具备上下文学习的能力。上下文学习不会更新 LLM 的任何参数,却在各种 NLP 任务中却展现出了令人惊艳的成果。那么,GPT 能否通过上下文学习解决视觉任务呢?

  最近,来自谷歌和卡内基梅隆大学(CMU)的研究者联合发表的一篇论文表明:只要我们能够将图像(或其他非语言模态)转化为 LLM 能够理解的语言,这似乎是可行的。

  这篇论文揭示了 PaLM 或 GPT 在通过上下文学习解决视觉任务方面的能力,并提出了新方法 SPAE(Semantic Pyramid AutoEncoder)。这种新方法使得 LLM 能够执行图像生成任务,而无需进行任何参数更新。这也是使用上下文学习使得 LLM 生成图像内容的首个成功方法。

  例如,在给定上下文中,通过提供 50 张手写图像,论文要求 PaLM 2 回答需要生成数字图像作为输出的复杂查询:

  实际上,将图像转化为 LLM 能够理解的语言,是在视觉 Transformer(ViT)论文中就已经研究过的问题。在 Google 和 CMU 的这篇论文中,他们将其提升到了一个新的层次 —— 使用实际的单词来表示图像。

  这种方法就像建造一个充满文字的塔楼,捕捉图像的语义和细节。这种充满文字的表示方法让图像描述可以轻松生成,并让 LLM 可以回答与图像相关的问题,甚至可以重构图像像素。

  具体来说,该研究提出使用经过训练的编码器和 CLIP 模型将图像转换为一个 token 空间;然后利用 LLM 生成合适的词法 token;最后使用训练有素的解码器将这些 token 转换回像素空间。这个巧妙的过程将图像转换为 LLM 可以理解的语言,使我们能够利用 LLM 在视觉任务中的生成能力。

  为了验证 SPAE 设计方法的有效性,该研究进行了消融实验,实验结果如下表 4 和图 10 所示:

  本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。

最火资讯

本网转载作品的目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。如涉及作品内容、版权等问题,请联系我们进行修改或删除!